3.848 \(\int \frac{(a+b x^2)^2}{(e x)^{13/2} \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=242 \[ -\frac{d^{3/4} \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right ),\frac{1}{2}\right )}{231 c^{13/4} e^{13/2} \sqrt{c+d x^2}}-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{2 \sqrt{c+d x^2} \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right )}{231 c^3 e^5 (e x)^{3/2}}-\frac{2 a \sqrt{c+d x^2} (22 b c-9 a d)}{77 c^2 e^3 (e x)^{7/2}} \]

[Out]

(-2*a^2*Sqrt[c + d*x^2])/(11*c*e*(e*x)^(11/2)) - (2*a*(22*b*c - 9*a*d)*Sqrt[c + d*x^2])/(77*c^2*e^3*(e*x)^(7/2
)) - (2*(77*b^2*c^2 - 5*a*d*(22*b*c - 9*a*d))*Sqrt[c + d*x^2])/(231*c^3*e^5*(e*x)^(3/2)) - (d^(3/4)*(77*b^2*c^
2 - 5*a*d*(22*b*c - 9*a*d))*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan
[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(231*c^(13/4)*e^(13/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.2216, antiderivative size = 242, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {462, 453, 325, 329, 220} \[ -\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{d^{3/4} \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{231 c^{13/4} e^{13/2} \sqrt{c+d x^2}}-\frac{2 \sqrt{c+d x^2} \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right )}{231 c^3 e^5 (e x)^{3/2}}-\frac{2 a \sqrt{c+d x^2} (22 b c-9 a d)}{77 c^2 e^3 (e x)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^2/((e*x)^(13/2)*Sqrt[c + d*x^2]),x]

[Out]

(-2*a^2*Sqrt[c + d*x^2])/(11*c*e*(e*x)^(11/2)) - (2*a*(22*b*c - 9*a*d)*Sqrt[c + d*x^2])/(77*c^2*e^3*(e*x)^(7/2
)) - (2*(77*b^2*c^2 - 5*a*d*(22*b*c - 9*a*d))*Sqrt[c + d*x^2])/(231*c^3*e^5*(e*x)^(3/2)) - (d^(3/4)*(77*b^2*c^
2 - 5*a*d*(22*b*c - 9*a*d))*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan
[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(231*c^(13/4)*e^(13/2)*Sqrt[c + d*x^2])

Rule 462

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(c^2*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^2}{(e x)^{13/2} \sqrt{c+d x^2}} \, dx &=-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}+\frac{2 \int \frac{\frac{1}{2} a (22 b c-9 a d)+\frac{11}{2} b^2 c x^2}{(e x)^{9/2} \sqrt{c+d x^2}} \, dx}{11 c e^2}\\ &=-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{2 a (22 b c-9 a d) \sqrt{c+d x^2}}{77 c^2 e^3 (e x)^{7/2}}+\frac{\left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \int \frac{1}{(e x)^{5/2} \sqrt{c+d x^2}} \, dx}{77 c^2 e^4}\\ &=-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{2 a (22 b c-9 a d) \sqrt{c+d x^2}}{77 c^2 e^3 (e x)^{7/2}}-\frac{2 \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \sqrt{c+d x^2}}{231 c^3 e^5 (e x)^{3/2}}-\frac{\left (d \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right )\right ) \int \frac{1}{\sqrt{e x} \sqrt{c+d x^2}} \, dx}{231 c^3 e^6}\\ &=-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{2 a (22 b c-9 a d) \sqrt{c+d x^2}}{77 c^2 e^3 (e x)^{7/2}}-\frac{2 \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \sqrt{c+d x^2}}{231 c^3 e^5 (e x)^{3/2}}-\frac{\left (2 d \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{231 c^3 e^7}\\ &=-\frac{2 a^2 \sqrt{c+d x^2}}{11 c e (e x)^{11/2}}-\frac{2 a (22 b c-9 a d) \sqrt{c+d x^2}}{77 c^2 e^3 (e x)^{7/2}}-\frac{2 \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \sqrt{c+d x^2}}{231 c^3 e^5 (e x)^{3/2}}-\frac{d^{3/4} \left (77 b^2 c^2-5 a d (22 b c-9 a d)\right ) \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{231 c^{13/4} e^{13/2} \sqrt{c+d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.23611, size = 196, normalized size = 0.81 \[ \frac{x^{13/2} \left (-\frac{2 \left (c+d x^2\right ) \left (3 a^2 \left (7 c^2-9 c d x^2+15 d^2 x^4\right )+22 a b c x^2 \left (3 c-5 d x^2\right )+77 b^2 c^2 x^4\right )}{c^3 x^{11/2}}-\frac{2 i d x \sqrt{\frac{c}{d x^2}+1} \left (45 a^2 d^2-110 a b c d+77 b^2 c^2\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{i \sqrt{c}}{\sqrt{d}}}}{\sqrt{x}}\right ),-1\right )}{c^3 \sqrt{\frac{i \sqrt{c}}{\sqrt{d}}}}\right )}{231 (e x)^{13/2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^2/((e*x)^(13/2)*Sqrt[c + d*x^2]),x]

[Out]

(x^(13/2)*((-2*(c + d*x^2)*(77*b^2*c^2*x^4 + 22*a*b*c*x^2*(3*c - 5*d*x^2) + 3*a^2*(7*c^2 - 9*c*d*x^2 + 15*d^2*
x^4)))/(c^3*x^(11/2)) - ((2*I)*d*(77*b^2*c^2 - 110*a*b*c*d + 45*a^2*d^2)*Sqrt[1 + c/(d*x^2)]*x*EllipticF[I*Arc
Sinh[Sqrt[(I*Sqrt[c])/Sqrt[d]]/Sqrt[x]], -1])/(c^3*Sqrt[(I*Sqrt[c])/Sqrt[d]])))/(231*(e*x)^(13/2)*Sqrt[c + d*x
^2])

________________________________________________________________________________________

Maple [A]  time = 0.031, size = 411, normalized size = 1.7 \begin{align*} -{\frac{1}{231\,{x}^{5}{c}^{3}{e}^{6}} \left ( 45\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ) \sqrt{-cd}{x}^{5}{a}^{2}{d}^{2}-110\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ) \sqrt{-cd}{x}^{5}abcd+77\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ) \sqrt{-cd}{x}^{5}{b}^{2}{c}^{2}+90\,{x}^{6}{a}^{2}{d}^{3}-220\,{x}^{6}abc{d}^{2}+154\,{x}^{6}{b}^{2}{c}^{2}d+36\,{x}^{4}{a}^{2}c{d}^{2}-88\,{x}^{4}ab{c}^{2}d+154\,{x}^{4}{b}^{2}{c}^{3}-12\,{x}^{2}{a}^{2}{c}^{2}d+132\,{x}^{2}ab{c}^{3}+42\,{a}^{2}{c}^{3} \right ){\frac{1}{\sqrt{d{x}^{2}+c}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2/(e*x)^(13/2)/(d*x^2+c)^(1/2),x)

[Out]

-1/231/(d*x^2+c)^(1/2)/x^5*(45*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/
2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*(-c*d)^(1/2
)*x^5*a^2*d^2-110*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x
/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*(-c*d)^(1/2)*x^5*a*b*c*d
+77*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*
d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*(-c*d)^(1/2)*x^5*b^2*c^2+90*x^6*a^2*d^
3-220*x^6*a*b*c*d^2+154*x^6*b^2*c^2*d+36*x^4*a^2*c*d^2-88*x^4*a*b*c^2*d+154*x^4*b^2*c^3-12*x^2*a^2*c^2*d+132*x
^2*a*b*c^3+42*a^2*c^3)/c^3/e^6/(e*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{2}}{\sqrt{d x^{2} + c} \left (e x\right )^{\frac{13}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(13/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^2/(sqrt(d*x^2 + c)*(e*x)^(13/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt{d x^{2} + c} \sqrt{e x}}{d e^{7} x^{9} + c e^{7} x^{7}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(13/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(d*x^2 + c)*sqrt(e*x)/(d*e^7*x^9 + c*e^7*x^7), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2/(e*x)**(13/2)/(d*x**2+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{2}}{\sqrt{d x^{2} + c} \left (e x\right )^{\frac{13}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/(e*x)^(13/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2/(sqrt(d*x^2 + c)*(e*x)^(13/2)), x)